www.powel.ru
«ЭФО»
E-mail:
Пароль:



     
AC-DC Application Note: Download AC-DC Application Note PDF File         DC-DC Application Note: Download DC-DC Application Note PDF File          ABR300 Application Note: Download ABR300 Application Note PDF File           
     
  AC-DC Application Note  
 
          AC Input Line Connection :
  The pin of AC line (L), ac neutral (N), and the third wire safety ground (FG) should be retained from the AC power outlet to the power supply input terminals without accidental interchange. (Figure 1.1)  
   (Figure 1.1)  
  The FG pin should be connected to the equipment where power supply is placed as thicker and shorter to protect electric shock or noise interference. (Figure 1.2)  
   (Figure 1.2)  
 
     
 
          Series and parallel operation
  I. Series operation Most power converters can be operated in series if they have overload limitation by either constant current or constant power circuits. To protect each output from the reverse voltage applied by the other unit in the event of load short circuits, reverse biased diodes are used as shown in Figure 2.1  
   (Figure 2.1)  
  II. (a.) Parallel operation This is only recommended with power converters specifically designed for parallel connection. In the parallel redundant scheme illustrated in Figure 2.2 one of the power converters could be replaced by a battery followed by a DC-DC converter to provide a no-break power system in the event of main rsupply failure.  
    (b.) If we want to put the two power supplies in parallel, we have to adjust the output voltage to be the same for both of them.(Hence, if the power supply doesn’t support this function of output voltage adjustment, then it shall not be put into parallel)  
   (Figure 2.2)  
 
     
 
          Reduce the output ripple and noise :
  Using a LC filter or a Capacitor reduces the output ripple and noise. (Figure 3.1)  
   (Figure 3.1)  
 
     
 
          Screws for Switching Power Supply (AQS & AQF Series) :
  Please be aware the length of screw should not be longer than 3 mm while you mounting/ adopting our power supply on your end application, in case screw break through Mylar or PCB Board result in short circuit.  
 
     
 
          Class I suggested circuit for lowering EMC circuitary connection:
   
 
     
 
          Class II suggested circuit for general application circuitary connection :
   
 
     
 
Item
Location
Description
1  F1  AHC / AHCN / APCN / ATCN / ANCN / ASC  Slow blow Fuse 1.6A / 250V
 AUC / AFC/ AFCN / AVC / AKC /
 AFC20 / AFC20N / MTC
 Slow blow Fuse 2A / 250V
 ALC / AHC08  Slow blow Fuse 2A / 300V
 AIC / AOC / AJC / ANC50 / AEC60 / AQC100 
 MFC15 / MZC20 / MTC30 / MSC / MSC60
 Slow blow Fuse 3.15A / 250V
 AYC / AZC / AOCH / ATC30  Slow blow Fuse 3.15A / 300V
 AQC125  Slow blow Fuse 4A / 250V
2  RV1  Vin(max)=264  14S471K or 20S471K
 Vin(max)=305  14S561K or 20S561K
3  RV2  Vin(max)=264  14S471K or 20S471K
 Vin(max)=305  14S561K or 20S561K
4  RV3  Vin(max)=264  14S471K or 20S471K
 Vin(max)=305  14S561K or 20S561K
5  C1  X Capacitor  0.1uF~0.68uF 300V X1
6  L1  10~50mH
7  D1  TVS (Vout=3.3V)  SMBJ5.0A or 600W↑ (Peak)
 TVS (Vout=5V)  SMBJ7.0A or 600W↑ (Peak)
 TVS (Vout=9V)  SMBJ12A or 600W↑ (Peak)
 TVS (Vout=12V)  SMBJ20A or 600W↑ (Peak)
 TVS (Vout=15V)  SMBJ20A or 600W↑ (Peak)
 TVS (Vout=24V)  SMBJ30A or 600W↑ (Peak)
 TVS (Vout=48V)  SMBJ64A or 600W↑ (Peak)
8  CY1  Y Capacitor  220pF~4700pF 250V Y2
9  CY2  Y Capacitor  220pF~4700pF 250V Y2
10  RT1  Φ8~Φ20 10R
11  L2  3.3uH~100uH
12  L3  3.3uH~100uH
13  C2  Aluminum  47uF or 47uF↑
14  C3  Soild Capacitor  0.1uF
15  SA1  Surge absorber (Vout=5VDC)  3KV
 
 
 
1. An external varistor is mandatorily required for both AYC and AZC in order to pass EN61000-4-5

2. The following products, AHC、AHCN、AVC、AUC、AYC、AZC、AFC20H、AFD25、AOD10, pass
    EN61000-4-5 without a built-in varistor. Customer is recommended but not required to add a varistor for 
    better protection against Surge at will.

3. The rest of products, with a built-in varistor, pass EN61000-4-5. Customer may add a varistor for better 
    protection against Surge at will.
 
 
     
AC-DC Application Note: Download AC-DC Application Note PDF File         DC-DC Application Note: Download DC-DC Application Note PDF File          ABR300 Application Note: Download ABR300 Application Note PDF File           
                                             AC-DC Application Note       DC-DC Application Note       ABR300 Application Note   
DC-DC Application Note  
 
          Connection for standard use :
  Cin: External capacitor on the input side
Co: External capacitor on the output side
 
   (Figure 6.1)  
 
 
          Reverse input voltage protection :
  TAvoid the reverse input voltage because it will damage the power supply. Installing an external diode can protect the converter from the reverse input voltage.  
   (Figure 7.1)  
 
 
          Series and parallel operation ::
  I. Series operation Most power converters can be operated in series if they have overload limitation by either constant current or constant power circuits. To protect each output from the reverse voltage applied by the other unit in the event of load short circuits, reverse biased diodes are used as shown in Figure 8.1  
   (Figure 8.1)  
  II. (a.) Parallel operation This is only recommended with power converters specifically designed for parallel connection. In the parallel redundant scheme illustrated in Figure 8.2 one of the power converters could be replaced by a battery followed by a DC-DC converter to provide a no-break power system in the event of main supply failure.  
    (b.) If we want to put the two power supplies in parallel, we have to adjust the output voltage to be the same for both of them.(Hence, if the power supply doesn’t support this function of output voltage adjustment, then it shall not be put into parallel)  
   (Figure 8.2)  
 
 
          Remote On/ Off Control Pin :
  Positive logic remote on/ off turns the module on during a logic high voltage on the remote on/ off pin, and off during a logic voltage low. In order to turn module on or off, the use must supply a switch to control the voltage between the on / off terminal and the –Vin terminal.  
 
   
 
          EMI Block Diagram (under 40W) :
  Different product series may have various values.Please contact us for correct parameter if needed.  
 

 (Figure 9.1)

 
 
     
 
          Peak-to-Peak Output Noise Measurement Test :
  Use a Cout ceramic capacitor. Please refer to capacitor value of every series. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.  
 

 (Figure 10.1)

 
 
     
AC-DC Application Note: Download AC-DC Application Note PDF File         DC-DC Application Note: Download DC-DC Application Note PDF File          ABR300 Application Note: Download ABR300 Application Note PDF File           
                                             AC-DC Application Note       DC-DC Application Note       ABR300 Application Note   
ABR300 Application Note  
     
 
          Pin Assignment :
   
 
     
 
Pin No.
Pin Connection
Pin Description
1  AC IN (L)  AC (L) input
2
 AC IN (N)
 AC (N) input
3  -DC OUT  DC (-) output
4  +DC OUT  DC (+) output
5  -S  Remote sensing (-)
6  +S  Remote sensing (+)
7  TRIM  Adjustment of output voltage
8  ENA  Open collector (10mA sink current). Low when output is present.
9  -BC  Smoothing bulk capacitor (-)
10  +BC  Smoothing bulk capacitor (+)
11  R  External resistor for inrush current protection
-  FG  M3 screw mounting hole (FG)
 
     
 
          Connection for Standard Use
  (a).To Use the ABR300 series, external components should be connect as shown in Fig. 12.1.1.  
  (b).The ABR300 series should be conduction-cooled. Use a heatsink or fan to dissipate heat.  
   (Figure 12.1)  
  Table 12.1.1 List of Components  
 
No
Symbol
Item
Rating
Remark
1  F11  Input fuse  AC250V / 10A  –
2  C11  Input capacitor
 AC275V / 1uF  Class X1 or X2
3  CY1  Y capacitor  AC250V / 1000pF  Class Y1
4  L11  Noise filter  Line Filter  Min. 9mH  –
5  L12  Min. 12mH  –
6  L13  Min. 100uH  –
7  CX1  X capacitor  AC275V / 0.68uF  Class X1 or X2
8  CX2  AC275V / 1uF  Class X1 or X2
9  CY2, CY3  Y capacitor  AC250V / 2200pF  Class X1 or Y2
10  CY4, CY5  AC250V / 1000pF  Class X1 or Y2
11  Co1  Output pi filter  12S  DC16V / 1500uF x2  Conductive Polymer
 24S, 28S  DC35V / 1000uF x3  Electrolytic capacitor
 48S  DC63V / 390uF x3  Electrolytic capacitor
12  Co2  12S  DC16V / 2200uF x2  Electrolytic capacitor
 24S, 28S  NC  Electrolytic capacitor
 48S  NC  Electrolytic capacitor
13  Cbc  Smoothing capacitor for boost voltage  DC450V / 470uF  Electrolytic capacitor
14  C20,C30  Capacitor for boost voltage  DC450V / 0.68uF ×2   (parallel)  Film capacitor
15  TFR1  Inrush current limiting resistor  10Ω  Thermal fuse build-in resistor
16  R1  Discharging resistor  470KΩ  1/4W resistor
17  SK21 / SK22  Varistor  NC  –
18  SA11  Surge absorber  NC  –
19  SK11  Varistor  620V  300Vac / 3500A (8/20μS)
 
     
  2.2 Output Capacitors: Co1, Co2  
  (a). Install several external capacitor, Co, between +DC OUT and –DC OUT pins for stable operation of the power supply. Recommend capacitance of Co is shown in Table 12.2.1  
  (b). Use low impedance capacitors with excellent temperature characteristics.  
  (c). Specifications, output ripple and ripple noise as evaluation data values are measured according to Fig. 12.2.1.  
     
  Table 12.1.1 List of Components  
 
Output Voltage
Co1
Co2
Remark
12V  DC16V / 1500uFx3  DC16V / 1800uFx3  Co1: Conductive Polymer Aluminum Solid Capacitors 
 Co2: Electrolytic capacitor
24V
 DC35V / 1000uFx3
 DC35V / 1000uFx1
 Electrolytic capacitor
28V  DC35V / 1000uFx3  DC35V / 1000uFx1  Electrolytic capacitor
48V  DC63V / 390uFx3  DC63V / 390uFx1  Electrolytic capacitor
 
     
  Fig. 12.2.1 Measuring environment  
   (Figure 12.2.1)  
     
  2.3 Smoothing Capacitor for Boost Voltage: Cbc  
  (a). In order to smooth boost voltage, connect Cbc between +BC and –BC.  
  (b). Install a capacitor Cbc with a rated voltage of DC 450V or higher within the allowable capacitance.  
  (c). When operated below 0°C, operation may become unstable as boost ripple voltage increase due to ESR characteristics. Choose a capacitor which has higher capacitance than recommend. Select a capacitor so that the ripple voltage of the boost voltage is 30 Vp-p or below.  
  (d). If the ripple voltage of the boost voltage increases, the ripple current rating of the smoothing capacitor may be exceeded. Check the maximum allowable ripple current of the capacitor.  
  (e). The ripple current changes with PCB patterns, external parts, ambient temperature, etc. Check the actual ripple current value flowing through Cbc.  
     
  Table 12.3.1 Recommend Capacitance Cbc  
 
Recommend Capacitance
Allowable capacitance range
470uF  330uF ~ 680uF
 
     
  2.4 Inrush Current Limiting Resistor: TRF1  
  (a). The TFR1 must be connected, if TFR1 is not connect, the power supply will not operate.  
  (b). Connect TFR1 between R and +RC. Recommend resistance of TFR1 is shown in table 12.4.1  
  (c). The surge capacity is require TFR1.  
  (d). Wirewound resistor with thermal cut-offs type is required.  
  (e). The inrush current changes by PCB pattern, parts characteristic etc. Check the actual inrush current value flowing through the AC line.  
     
  Table 12.4.1 Recommended resistance TRF1  
 
Model
Recommended resistance
ABR300  4.7 ~ 22 Ω
 
     
  2.5 Discharging Resistor: R1  
  (a). If you need to meet the safety standards, connect a discharging resistor R1 between AC IN (L) and AC IN (N).  
  (b). Please select a resistor so that the voltage between AC IN (L) and AC IN (N) decreases in 42.4V or less at 1 second after turn off the input.  
  (c). Fig. 2.5.1 shows the relationship between a necessary resistance of R1 and total capacitance of input interface capacitors. And the data of Fig. 12.5.1 is the values that assumed the worst condition.  
  (d). Please keep margin for rated voltage and power of R1.  
     
  Fig. 12.5.1 Relationship between resistance of R1 andtotal capacitanceof input interface capacitors  
   (Figure 12.5.1)  
     
          Output Voltage Adjustment
  3.1 Output Voltage Adjustment Range  
  (a). The output voltage is adjustable in the output voltage variable range shown in Table 13.1.1  
  (b). Overvoltage protection may be activated if output voltage is set up over the certain level.  
     
  Table 13.1.1 Output voltage variable range  
 
Output voltage
12S
24S
28S
48S
Variable range  10.8V ~ 13.2V  21.6V ~ 26.4V  25.2V ~ 30.8V  43.2V ~ 52.8V
 
     
  3.2 Output Voltage Adjustment  
 
Typical Output voltage
12S
24S
28S
48S
Trim → -V  0% ~ +10%  0% ~ +10%  0% ~ +10%  0% ~ +10%
∞ ~ 25k  ∞ ~ 33k  ∞ ~ 31k  ∞ ~ 29k
Trim → +V  -10% ~ 0%  -10% ~ 0%   -10% ~ 0%   -10% ~ 0%
 96k ~ ∞  250k ~ ∞V  312k ~ ∞  655k ~ ∞
 
     
          Hold Up Timet
  Hold up time is affected by the capacitance of Cbc. Table 14.1.1 show the relationship between hold up time and output current within the allowable capacitance of Cbc.  
     
  Table 14.1.1 Hold up time with 100 Vac input  
 
Capacitance of 
Cbc (uF)
Hold up time with 100% load (ms)
Hold up time with 75% load (ms)
Hold up time with 50% load (ms)
Hold up time with 25% load (ms)
330  11  30  60  65
470  15  42  65  65
680  21  608  651  65
 
 
     
 
          Thermal Design
  5.1 Overview  
  To ensure operation of power module, it is necessary to keep aluminum base plate temperature within the allowable temperature limit. The reliability of the power module depends on the temperature of the base plate. In order to obtain maximum reliability, keep the aluminum base plate temperature low.  
     
  5.2 Efficiency and Dissipation Power  
  (a). Not all of the input power is converted to output power, some loss is dissipated as heat power module inside. To determine the internal power dissipation, give 1 – 2 % margin of the efficiency value which is calculated by Characteristics of Efficiency vs. Output Power.  
  (b). Efficiency is defined as percentage of Output power vs. Input power. Efficiency depends on input voltage and output current.  
     
  Fig. 15.1.1 Internal power dissipation calculating  
                                (Figure 15.1.1)  
     
  5.3 Relationship Between Efficiency and Output Power  
   
   
   
     
  5.4 Thermal Resistance  
  (a). In most applications, heat will be conducted from the base plate into an attached heat sink. Heat conducted across the interface between the base plate and heat sink will result in a temperature drop which must be controlled. As shown in Fig. 15.4.1, the interface can be modeled as thermal resistance with the dissipated power flow.  
                    (Figure 15.4.1)  
  (b). Contact thermal resistance is between base plate and heat sink. To decrease the contact thermal resistance, use thermal grease and thermal pad. When using thermal grease, apply in a uniform thin coat.  
  (c). The thermal grease and thermal pad have the following respective features.  
    (i) Thermal grease: low thermal resistance (0.2 – 0.3°C/W).  
    (ii) Thermal pad : higher than thermal grease (0.3 – 0.4°C/W).  
     
  5.5 Convection Cooling and Forced Air Cooling  
  (a). The benefits of convection cooling is low cost implementation, no need for fans, and the inherent reliability of the cooling process. Compared to forced air cooling, convection cooling needs more heat sink volume to cool down an equivalent base plate temperature. Thermal resistance depends on heat sink shape. Therefore, refer to the detailed thermal resistance data supplied by the manufacturer prior to the selection.  
  (b). Heat sink data is almost always given for vertical fin orientation. Orienting the fins horizontally will reduce cooling effectiveness. If horizontal mounting is required, obtain relevant heat sink performance data or use forced air cooling.  
  Fig. 15.5.1 Convection cooling mounting method  
                                (Figure 15.5.1)  
  (c). In forced air cooling method, heat dissipation ability of the heat sink improves much higher than convection cooling.  
     
  5.6 Notes on Thermal Design  
  (a). Base plate temperature should be measured at the center of the base plate.  
  (b). The interface between base plate and heat sink is smooth, flat and free of debris.  
  (c). Unless the base plate and the heat sink are placed in close contact with each other, contact thermal resistance will increase until heat radiation becomes insufficient. Always use either thermal grease or thermal pads.  
  (d). Avoid blocking the airflow to the module with other components.  
  (e). Use a heat sink with fins running vertically for natural convection.  
     
  5.7 Thermal Design Example  
    Conditions:  
    Input voltage = 230 Vac, Max. ambient temperature(Ta) = 50°C, Aluminum base plate temperature(Tc) = 80°C Output voltage = 48 V, Output current = 5 A  
  Table 15.7.1  
 
Step
Description
Design example
1  Determine the required output power(Pout),
 maximum ambient temperature(Tc) and
 aluminum base plate temperature(Tc).
 temperatureFor higher reliability, the aluminum 
 base plateis set 
 up below 80 °C. 
 Ta = 50 °C 
 Pout = 48 (V) × 5 (A) = 240 (W) 
 Tc = 80 °C
2  Obtain the efficiency (η)  Efficiency is obtained by Fig. 15.3.1 
 η=89%, to give 2% efficiency will be 87%
3  Calculate the internal power dissipation  Power dissipation(Pd) = 
 (1 – 0.87) ÷ 0.87 × 240 = 35.86 (W)
4  Obtain contact thermal resistance (θc-h)  Use a thermal grease with a thermal resistance 
 ( of 0.2°C/W
5  Calculate thermal resistance of Heat sink
 (θh-a)
 θh-a = (80 – 50) ÷ 35.86 – 0.2 = 0.64
6  Choose the heat sink  Use a heat sink with R378ABR00001
7  Obtain the required wind velocity  The wind velocity required to reduce the resistance to 
 set up 0.64 or below. Refer to table 5.8.1, the wind 
 velocity required up over 2.0 m/s with airflow direction A.
8  Choose the fan  Choose the fan capable of supplying air at a velocity 
 of 2.5 m/s or higher.
9  Check the design with actual equipment  Measure the aluminum base plate temperature 
 at actual conditions. 
 Ta = 50 °C, Pout = 240 W 
 Then confirm the base plate temperature below 80 °C.
 
     
  5.8 Heat Sink Size and Thermal Resistance  
          (Figure 15.8.1)  
  Table 15.8.1  
 
Model
Size (mm)
Thermal resistance (°C/W)
H W D Air convection Airflow direction Forced air cooling
R378ABR00001 25 117 61 0.5 m/s 1.0 m/s 1.5 m/s 2.0 m/s 20.5 m/s 3.0 m/s
Vertical 2.0 A 1.24 0.91 0.77 0.66 0.57 0.51
Horizontal 1.97 B 0.79 0.58 0.44 0.38 0.33 0.30
 
 
     
 
          Reference PCB Layout :
   
   
 
     
 
          Example of Which Reduce EMI
   
 
     
     
 
          Example of Which Reduce EMI
  7.1 EMI Measure Example  
     
  Fig. 17.1.Circuit example for EMI solution  
   (Figure 17.1)  
  Table 17.1.1  
 
No
Symbol
Item
EN55022 Class B
Rating
1  C11  Input capacitor
 AC275V / 1uF
2  CY1  Y capacitor  AC250V / 1000pF
3  L11  Noise filter  Line Filter  Min. 9mH
4  L12  Min. 12mH
5  L13  Min. 100uH
6  CX1  X capacitor  AC275V / 0.68uF
7  CX2  AC275V / 1uF
8  CY2, CY3  Y capacitor  AC250V / 2200pF
90  CY4, CY5  AC250V / 1000pF
 
 
     
AC-DC Application Note: Download AC-DC Application Note PDF File         DC-DC Application Note: Download DC-DC Application Note PDF File          ABR300 Application Note: Download ABR300 Application Note PDF File           
   

Дистрибуция электронных компонентов www.efo.ru © All rights reserved. EFO Ltd.
При использовании материалов
ссылка на источник обязательна.
Создание сайта © 2010 PointDesign™
Конструктивы и корпуса РЭА www.korpusa.ru Микроконтроллеры www.mymcu.ru Микросхемы Altera www.altera.ru
Мир беспроводных решений www.wless.ru Волоконно-оптические компоненты www.infiber.ru Кварцевые резонаторы
и генераторы Golledge
www.golledge.ru
Силовая электроника www.efo-power.ru Электротехническая продукция www.efo-electro.ru Контрольно-измерительные приборы www.efometry.ru
Профессиональные усилители класса D www.sound-power.ru Датчики и первичные преобразователи www.efo-sensor.ru Компоненты для промавтоматики www.efomation.ru
Продукция Lattice Semiconductor www.latticesemi.ru